If it's not what You are looking for type in the equation solver your own equation and let us solve it.
256x^2+81x^2=2500
We move all terms to the left:
256x^2+81x^2-(2500)=0
We add all the numbers together, and all the variables
337x^2-2500=0
a = 337; b = 0; c = -2500;
Δ = b2-4ac
Δ = 02-4·337·(-2500)
Δ = 3370000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3370000}=\sqrt{10000*337}=\sqrt{10000}*\sqrt{337}=100\sqrt{337}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-100\sqrt{337}}{2*337}=\frac{0-100\sqrt{337}}{674} =-\frac{100\sqrt{337}}{674} =-\frac{50\sqrt{337}}{337} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+100\sqrt{337}}{2*337}=\frac{0+100\sqrt{337}}{674} =\frac{100\sqrt{337}}{674} =\frac{50\sqrt{337}}{337} $
| -4+2x+2=x+1=x+1+x | | 3a^2-18a^2=0 | | -5x-15=-80 | | 0=(K-1)^2-4(k)(0.8) | | -4+2x+2=x+1=x | | 17=1-5r+r | | -5x-5=-90 | | -5x-5=90 | | 5x-3(x-2)=4(-x-1) | | -2(2/3)+d/6=2/3 | | 3x+20=1x+15 | | |4y+11|=7 | | 7(k-7)=2(11+k’ | | 2x÷5=15 | | 7.5(1-5r)=27.5 | | 2p+4p+p=35 | | 2(5/2x+3)=7x+5 | | 7x+35+2x+10=90 | | 7x+35+2x+10=180 | | -3x-6+7x=8x+34 | | 7=(11x-36) | | 2x+10+7x+35=360 | | 3(2x-5)=2(2x-9) | | 125x+740=1040 | | (12x^2+5x-7)/(4x+3)=0 | | 14-6x=100 | | 100(1.25x)+100(7.4)=10(10.4) | | 3000=1625+0.04x | | 6x-14=-100 | | X+a=61 | | 10(1.25x)+10(7.4)=10(10.4) | | -5(v+-16)=95 |